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Integrins play critical roles in development, wound healing,

immunity and cancer. Central to their function is their unique

ability to modulate dynamically their adhesiveness through both

affinity- and valency-based mechanisms. Recent advances have

shed light on the structural basis for affinity regulation and on the

signaling mechanisms responsible for both affinity and valency

modes of regulation.
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Abbreviations
BRET bioluminescence resonance energy transfer

EM electron microscopy

FERM band 4.1, ezrin, radixin, moesin

FRET fluorescence resonance energy transfer

I inserted

ICAM intercellular adhesion molecule

LFA-1 leukocyte-function-associated antigen-1 (integrin aLb2)

MIDAS metal-ion-dependent adhesion site

RAPL regulator for cell adhesion and polarization enriched in

lymphoid tissues

Introduction
Integrins represent a large family of heterodimeric adhe-

sion receptors composed of a and b subunits that possess

the unique ability to regulate dynamically their adhesive-

ness, through a process termed ‘inside–out signaling’.

Thus, stimuli received by other cell-surface receptors

initiate intracellular signals that impinge on integrin

cytoplasmic domains and alter the adhesiveness for extra-

cellular ligand. In addition, ligand binding is transduced

from the extracellular domain to the cytoplasm in the

classical outside–in direction (‘outside–in signaling’).

The overall strength of cellular adhesiveness (i.e.

‘avidity’) is governed by the intrinsic affinity of the

individual receptor–ligand bonds, and the number of

these bonds (valency). Valency is governed by the density

of receptor and ligand on the adhesive surfaces, the

geometric arrangement of those surfaces, and the ability

of the receptor and ligand to move, either passively by

diffusion or actively, from other parts of the cell into the

zone of cell adhesion. The dynamic regulation of integrin-

mediated adhesiveness is thought to involve modulation

of all of these parameters. It has previously been ques-

tioned whether changes in integrin affinity and conforma-

tion were overemphasized [1]; however, recent structural

advances reviewed here demonstrate that integrins

undergo striking conformational change, and that this

dramatically regulates affinity.

Our growing appreciation for the complexity of integrin

regulation is confused by inadequate and vague termi-

nology and conceptual plurality, especially for the key

concept of avidity. In the first demonstration of regulated

adhesiveness through leukocyte-function-associated anti-

gen-1 (LFA-1; integrin aLb2), it was stated that ‘although

the mechanism of the regulation of LFA-1 avidity is

unclear, a change in the conformation of the ICAM

[intercellular adhesion molecule] binding site or redis-

tribution in the membrane seem most likely’ [2]. This use

of the term ‘avidity’ was in keeping with prior use in

immunochemistry [3] for the total adhesive strength —

that is, the multimeric affinity or functional affinity —

that results from both the total number of receptor–ligand

bonds and the affinity of each of these bonds (monomeric

affinity). Thus, avidity can be regulated by either altering

valency or affinity. However, the term ‘avidity’ is used by

many workers in the field of integrin biology as encom-

passing only regulatory mechanisms that do not involve

affinity modulation.

In an attempt to clarify the terminology and concepts in the

integrin field, we will use the following definitions. Affinity

regulation: changes in monomeric affinity that are coupled

to alterations in integrin conformation or changes in the

equilibrium between different integrin conformational

states. Valency regulation: changes in cell surface receptor

diffusivity or local density, or in the geometry of the

interaction interface, that alter the number of adhesive

bonds that can form. Priming (inside–out signalling): reg-

ulatory events — either affinity- or valency-based — that

precede, or occur independently of, ligand binding, and

serve to enhance the propensity to bind ligand efficiently

[4]. Adhesion strengthening: ligand-dependent, post-

adhesion events that result in enhanced adhesive strength
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Current Opinion in Cell Biology

(i) (ii) (iii)

Thigh

Calf-1

Calf-2

β-Propeller I-like

Hybrid

I-EGF-1

I-EGF-2

I-EGF-3

I-EGF-4

β-Tail

PSI

α
α

β

β

β-Propeller

I-like

H
ea

dp
ie

ce
Ta

ilp
ie

ce

(a)

(b)

(c)

Thigh

β-Propeller I-like

Hybrid

I domain

H
ea

dp
ie

ce
H

ea
dp

ie
ce

HybridThigh

β-Propeller I-like

Carboxy-terminal helix

Intrinsic ligand

Extrinsic ligand

RGD

(i)

(ii)

(ii)

(i) (iii)

α

α

β

β

α

α α
β

β

β

Global and local integrin conformational changes associated with affinity regulation. (a) Switchblade model for global integrin conformation regulation
defined by EM [10��] and atomic structures [7,9,85�]. The upper panels show EM averages and the lower panels show ribbon diagrams based

on the bent crystal structure or fitting of the latter to the extended EM structures. (i) Bent conformation (low affinity). (ii) Extended conformation with

closed headpiece (predicted to be of intermediate affinity). (iii) Extended conformation with open headpiece (high affinity). (b) Hybrid domain

swing-out and pull spring models for priming of integrins lacking an I domain. The four main domains of the headpiece are drawn based on the
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either by accumulation of receptors into the zone of sub-

strate contact, increase in the area of contact or receptor

interaction with the cytoskeleton [5]. Ligand-induced

activation (outside–in signalling): ligand-induced propaga-

tion of intracellular signals, which result from either

changes in integrin conformation or cell surface distribu-

tion or both [4].

Affinity regulation
Global conformation rearrangements

Recently, a striking and unexpected model for integrin

global conformational regulation has emerged [6]. Using

electron microscopy (EM), it has been known for years

that the overall topology of integrins included a globular

amino-terminal ligand-binding head domain, containing a

critical a and b subunit interface, and two long carboxy-

terminal legs or stalks that connect to the transmembrane

and cytoplasmic domains of each subunit [7]. The recent

X-ray crystal structure of most of the extracellular domain

of the integrin aVb3 provided the surprising finding that

the legs were severely bent at the so-called ‘genu’ or knee,

generating a V-shaped topology in which the ligand-

binding domains in the headpiece were closely juxtaposed

to the membrane-proximal portions of the stalks (i.e. the

tailpiece; Figure 1a, first panel) [8��]. Such an orientation

appears unfavorable for binding to extracellular matrix or

cell-surface ligands. Indeed, nuclear magnetic resonance

(NMR), EM, mapping on the structures of epitopes of

conformation-sensitive and activating antibodies, and

engineering of disulfide bonds across the head–tail inter-

face, have together established that the bent or ‘closed’

integrin conformation represents the physiological low-

affinity state [9,10��,11��]. Moreover, priming and ligand

binding are associated with a separation of the a and b
tails that is coupled to a large global rearrangement in

which the integrin extends with a ‘switchblade’-like

motion [10��,11��,12�]. Furthermore, the introduction of

ectopic glycosylation sites into regions of b1 and b3 that

are buried in the closed conformation leads to constitutive

adhesiveness of a5b1, aIIbb3 and aVb3 [13,14��].

Intradomain conformational regulation

Although the change in orientation and heightened expo-

sure above the cell surface of the integrin headpiece that

accompanies global conformational change probably

increase integrin access to ligand, extensive evidence also

exists for coupled intradomain conformational changes

that modulate affinity [11��,12�,15]. Since intradomain

conformational change is best understood in integrin a
subunit inserted (I) domains, we will review this first and

then turn to integrin b subunit I-like domains.

Among the 18 integrin a subunits, half include an I

domain between blades 2 and 3 of the b-propeller, which

when present represents the major ligand-binding

domain [16]. Structures of I domains revealed the exis-

tence of two conformations, termed ‘closed’ and ‘open’

[16–19]. Compared with the closed conformation, the open

conformation exhibits distinct coordination of the metal in

the metal-ion-dependent adhesion site (MIDAS), a dis-

tinct arrangement of the b6-strand–a7-helix loop, and a

10 Å shift of the carboxy-terminal a7 helix down the side

of the I domain [17–19]. Mutations that stabilize the

closed or open conformation exhibit constitutively low

or high affinity for ligand, respectively [19–22,23�,24–26].

Engineered disulfide bonds that pull the a7 helix down-

ward are sufficient to induce high-affinity ligand binding

[19–21,23�,24]. Thus, physiological conformational sig-

nals that exert a similar pull might function in priming.

The ability to crystallize the mutationally stabilized open

conformation in the absence of ligand or a ligand mimetic

lattice contact [19], as well as the ability to detect move-

ment of the MIDAS [27] and carboxy-terminal a helix

[28] using conformation-sensitive antibodies in intact

cells in the absence of ligand demonstrates that the

high-affinity conformation can indeed form indepen-

dently of ligand, and thus that conformational change

contributes to integrin priming.

Interdomain communication

In I-domain-containing integrins, the I-like domain is

thought to represent a central regulator of the I domain.

Allosteric I-like domain antibodies [21], I-like MIDAS

mutation [29] and recently identified small-molecule

antagonists of the I-like MIDAS [30�] all inhibit ligand

binding by the I domain. Mutations in the linker between

the I-like domain a7 helix and the b-propeller domain

can either activate or inhibit ligand binding, and it was

(Figure 1 Legend continued) orientation, proportions and color scheme depicted in (a). The black cylinder and curved line coming from the

‘top’ of the I-like domain represent its carboxy-terminal a7 helix and the b6/a7 loop, respectively. The black line coming from the bottom of the a7

helix is one of the two connections to the hybrid domain. (i) Closed headpiece, corresponding to (i) and (ii) in (a). (ii) Open headpiece, corresponding to

(iii) in (a). The pivot or ‘swing-out’ of the hybrid domain by �808 with respect to the I-like domain is envisioned to pull the I-like a7 helix downward (i.e.

as a ‘pull spring’) and shift the b6–a7 loop and the MIDAS into the open conformation, capable of binding extrinsic ligand with high affinity. (c) Hybrid

domain swing-out and pull spring models for priming of an I-domain-containing integrin. Compared with (b), an I domain is inserted at the top of the

headpiece into the b-propeller at a location that corresponds to the approximate location of the loop connecting blades 2 and 3 in the atomic
structure. A black cylinder and curved line coming from the ‘top’ of the I domain represent its carboxy-terminal a7 helix and the b6–a7 loop,

respectively. In addition, the linker connecting the carboxyl terminus of the a7 helix to the b-propeller domain is depicted as a curved line coming from

the bottom of I domain a7 helix and connecting to the b-propeller domain. The invariant glutamate (Glu310 in LFA1) that is postulated to serve as

an intrinsic ligand for the I-like MIDAS is depicted as a yellow sphere. (i) Closed head piece. (ii) Open headpiece transition. Hybrid domain swing-out

and I-like MIDAS conformational change proceed as in (b). (iii) Open headpiece. The open I-like MIDAS binds to the intrinsic ligand in the linker,

exerting a pull on the a7 helix that causes it to move down the side of the I domain and the MIDAS to shift into the high-affinity conformation.
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suggested that an invariant glutamate residue in the

linker (Glu310 in LFA-1) might function as an intrinsic

ligand that, when bound to the I-like domain MIDAS,

would exert a downward pull on the I domain a7 helix and

induce the high-affinity state (Figure 1c) [6,31,32].

The orientation between the I-like and hybrid domains

appears to represent the critical ‘translator’ for converting

global conformational change into local intradomain con-

formational changes that regulate affinity (Figure 1).

High-resolution EM studies demonstrate that the hybrid

domain exhibits two distinct orientations with respect to

the I-like domain. In the presence of ligand, the hybrid

domain swings outward by �808, into an ‘open orienta-

tion’ [11��,15]. The I-like domain is inserted into the

hybrid domain, to which it is attached by both its amino

terminus and its carboxy-terminal a7 helix. The observed

direction of pivoting is consistent with downward move-

ment of the a7 helix which is hypothesized to be coupled

to a shift of the I-like domain MIDAS to the open

conformation (Figure 1) [11��,14��,15,33�]. Thus, I and

I-like domains are hypothesized to be activated by similar

conformational mechanisms. Addition of ectopic glyco-

sylation sites into b1 and b3, engineered to function as a

wedge between the I-like and hybrid domains and

enforce the open orientation, leads to constitutive

high-affinity ligand binding by both a5b1 and aIIbb3

[14��]. In addition, hybrid domain epitopes masked by

the I-like domain under basal conditions are exposed

upon activation [33�]. Furthermore, Leu358!Ala muta-

tion in the I-like domain carboxy-terminal a7 helix of b1

integrin induces both high-affinity ligand binding and

expression of I-like domain activation epitopes [33�].

Separation of the integrin a and b subunit transmembrane

and cytoplasmic domains has emerged as the critical

trigger for initiation of inside–out conformational signal-

ing (i.e. integrin priming; Figure 1). Cytoplasmic-domain

mutations are well known activators of integrin adhesive-

ness, and association between the a and b subunit trans-

membrane and cytoplasmic domains constrains the

inactive state [34]. Recent X-ray crystal [8��], EM [11��]
and cryo-EM [35] structures provide direct evidence that

the membrane-proximal portions of the extracellular

domains, and the transmembrane and cytoplasmic do-

mains of the a and b subunits, are in close juxtaposition

in the inactive state. Enforced association of the a and

b cytoplasmic domains [9] or of the a and b subunit

membrane-proximal stalks [11��,12�] renders integrins

inactive, whereas release of these constraints promotes

high-affinity ligand binding. NMR structures of the cyto-

plasmic domains of aIIb and b3 reveal a direct association

that is perturbed by both activating mutations and by

talin-head-domain binding [36��]. Recent fluorescence

resonance energy transfer (FRET)-based studies direct-

ly demonstrate that separation of the cytoplasmic do-

mains occurs in living cells during priming induced by

chemokine binding to G-protein-coupled receptors, talin-

head-domain binding, and as a consequence of activating

cytoplasmic domain mutations [37��].

Models for integrin conformation regulation

One of the more prominent models for integrin confor-

mational regulation has been the ‘hinge’ or ‘scissor’

hypothesis, in which a fulcrum was suggested to exist

within the transmembrane domain, and activation

involved separation or dramatic rigid body motion at

the a and b subunit interface in the head domain. This

model has now been ruled out by the use of engineered

intersubunit disulfide bonds in the headpiece [38] and by

EM analysis of aVb3 [11��] and fibronectin-bound a5b1

[15]. Furthermore, results from FRET-based measure-

ments suggest that the large scale of cytoplasmic domain

separation that occurs during priming and activation is

more consistent with separation of the transmembrane

domains than with hinging [37��].

The accumulating structural and functional data provide

strong support for a recently proposed model [11��] for

integrin conformational regulation (Figure 1). Priming

signals induce binding of proteins, such as talin and

possibly RAPL (regulator for cell adhesion and polariza-

tion enriched in lymphoid tissues; see below), that desta-

bilize association of — and initiate separation of — the a
and b subunit cytoplasmic and transmembrane domains.

As a direct consequence, the extracellular interface

between the a and b subunits in the tailpiece becomes

destabilized, concomitantly perturbing the tailpiece–

headpiece interface and facilitating switchblade-like

opening [11��]. The hybrid domain is prominent in the

tailpiece–headpiece interface, and disruption of this

interface appears to be required to enable the hybrid

domain to swing out with respect to the I-like domain,

facilitating the downward movement of the I-like domain

a7 helix that is coupled to MIDAS rearrangement [11��].
For integrins that lack I domains, this represents the final

step of priming (Figure 1b). For I-domain-containing

integrins, the I-like domain next appears to bind to the

intrinsic ligand in the linker between the I domain a7

helix and the b-propeller, thereby exerting a downward

pull on the a7 helix of the I domain, leading to affinity

modulation of its MIDAS (Figure 1c). The conforma-

tional rearrangements that result from modulation of

cytoplasmic/transmembrane domain association appear

similar to those that result from binding of ligand, except

that the conformational signals flow in opposite directions

[11��,12�,19,37��].

Linked equilibria, the law of mass action, intermediate

affinity states and conformational breathing need to be

borne in mind when considering conformational regula-

tion of integrins. EM studies of aVb3 demonstrate that in

many conditions, multiple conformational states co-exist

[11��], and physicochemical studies demonstrate that
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these states equilibrate on a timescale of less than min-

utes [11��]. EM studies demonstrate an intermediate

global conformation that is extended but has a closed

headpiece (Figure 1a, second panel), and is thus expected

to have an affinity for ligand intermediate between that of

the bent conformation and the extended conformation

with the open headpiece. Furthermore, a conformation is

seen that resembles the bent conformation, but in which

the interface between the headpiece and tailpiece is

partially opened [11��]. Moreover, crystal studies of the

integrin aL I domain demonstrate an intermediate con-

formation that appears to be at a low-energy minimum

along the pathway between the closed and open confor-

mations, and which has intermediate affinity for ligand

[19]. Ligand binding by integrins exhibits multistep

kinetics; conversion to a higher-affinity form occurs on

a timescale of �10 s after ligand binding [39–41]. The

magnitude of soluble ligand binding induced in cells by

physiological adhesion stimulators is intermediate com-

pared with basal and Mn2þ-stimulated conditions, which

might reflect intermediate affinities as well as fractional

priming [42–45]. Thus, regulation of integrin affinity/

conformation should be viewed as a shifting of the

dynamic equilibrium between closed, intermediate and

open conformers, rather than the flipping of a switch.

Importantly, ligand might function — just as inside–out

signals — to drive the equilibrium toward the open state.

Indeed, whereas Mn2þ induces a mixture of closed, inter-

mediate and open conformations of aVb3 (Figure 1a),

addition of saturating ligand produces almost exclusively

open conformers [11��]. Thus, in the context of cellular

adhesion, the combination of inside–out signals and ligand

binding should together determine the position of the

conformational equilibrium.

Valency regulation
Elucidation of the precise roles of, and mechanisms for,

integrin valency regulation has been clouded by the use

of the imprecise term ‘avidity regulation’ and the fre-

quent use of negative findings as the key justification for

concluding that valency regulation is at work. The prin-

ciple diagnostic used to infer valency-based modes of

regulation is the failure to observe high-affinity soluble

ligand binding when cells are activated with certain

agents that do induce cellular adhesion to ligands on

substrates [1,46,47]. However, the failure to detect solu-

ble ligand binding to cells under such conditions could

reflect a lack of sensitivity of ligand-binding assays to

intermediate levels of affinity, rather than a lack of affinity

regulation. For example, the dissociation constant Kd of

200 nM of the high-affinity conformation of the aL I

domain [23�] and of wild-type activated aLb2 [48] is just

barely within the range that is detectable by conventional

assays for ligand-binding to cells. The Kd of 2 mM for

the closed conformation is barely detectable even using

surface plasmon resonance. A designed intermediate-

affinity aL I domain has a Kd of �3 mM [19]. Such an

intermediate affinity should be sufficient for firm adhe-

sion, but not for detectable binding to soluble ligand.

Recent improvements in soluble ligand-binding assays,

including careful assessment of kinetics, have clearly

demonstrated rapid and transient integrin affinity reg-

ulation in response to chemokines [42–45]. Moreover, as

mentioned above, sensitive assays often demonstrate

that physiological stimuli, as well as phorbol myristate

acetate (PMA), induce markedly less soluble ligand

binding than Mn2þ [49], which is the commonly

employed positive control for affinity regulation.

Clustering or patching is often taken as positive evidence

for valency regulation; however, at best a correlation

rather than a causal relationship with increased adhesive-

ness can be demonstrated. Furthermore, microscopic

definitions of clustering are inconsistent and imprecise,

with diverse integrin distribution patterns including

punctate, patchy and polarized. Essentially, anything

other than an even membrane distribution (as determined

using fluorescence microscopy) is termed a ‘cluster’ and

thus ascribed functional relevance. Moreover, inherent to

the microscopic approaches used is the arbitrary and

flawed assumption that valency regulation should occur

on a length scale that is greater than the lower resolution

limit of the optical microscope. However, membrane

rafts, entities that inherently represent functionally

important clusters of lipids and proteins, are generally

not visible using such methods and require more sophis-

ticated techniques, such as FRET, for analysis [50].

Finally, experiments designed to assess integrin cluster-

ing are often performed under conditions that promote

robust homotypic cell aggregation and LFA-1 redistribu-

tion to the zone of adhesion [47]. All leukocytes that

express integrin aLb2 also express one or more of its

ligands, the ICAMs, facilitating formation of clusters of

homotypically adherent cells. aLb2 redistributed as a

consequence of binding to ICAM-1 on adjacent cells

would be expected to remain clustered for several min-

utes after cells are separated by vortexing.

Compounding the experimental issues is confusing

terminology. Diverse processes, including diffusion, oli-

gomerization, ligand-dependent redistribution as a con-

sequence of adhesion strengthening, and redistribution as

a consequence of polarization and intracellular trafficking,

have all been lumped together under the terms ‘avidity

regulation’ and ‘clustering’ (Figure 2). Thus, we will use

more precise terminology, referring to large-scale integrin

reorganization as ‘redistribution’ and referring only to

integrins that are close to one another on a molecular

length scale of �100 Å as ‘microclusters’. Moreover we

differentiate ligand-independent from ligand-dependent

redistribution processes as ‘active’ and ‘ligand-induced’,

respectively, and further differentiate the latter as either

‘diffusion-facilitated’ or ‘membrane-reshaping-facilitated’

(Figure 2).
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Active modes of integrin reorganization should occur

independently of ligand, implying the existence of intrin-

sic ‘driving forces’ for this [1,46]. Vesicular trafficking

[51,52] and Rap1-driven polarization [53��,54�] of integ-

rins represent important active modes of integrin reorga-

nization that take place during cell migration, as discussed

below. However, mechanistic support for active reorga-

nization of integrins during priming remains tenuous.

One hypothesis includes the dynamic recruitment of

leukocyte integrins into lipid rafts as a basis for valency

priming; however, reports conflict as to whether these

integrins are excluded, constitutively associated with, or

driven into rafts, and as to whether their adhesive func-

tions are sensitive to raft disruption [55–58]. Another

recently suggested mechanism for active integrin micro-

clustering includes formation of homotypic associations

between the transmembrane domains of neighboring

integrins upon transition to the open conformation

[59,60]. However, no direct support for such associations

occurring in wild-type integrins in cells yet exists. To the

contrary, conditions that promote the open high-affinity

conformation in LFA-1 fail to produce either microscopic

redistribution or FRET-detectable microclustering [37��].

The best-characterized basis for valency regulation is

adhesion strengthening, whereby post-adhesion accumu-

lation of receptor–ligand bonds contributes to overall

adhesiveness (Figure 2). An important mechanism for

Figure 2
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(i) Active redistribution (polarization)

(ii) Active microclustering (priming)

(i) Diffusion-facilitated ligand-induced 
adhesion strengthening

(ii) Ligand-induced microclustering

(i) ligand-induced redistribution
(adhesion strengthening)

(ii) Membrane reshaping-facilitated
ligand-induced adhesion strengthening

(a)

(b)

(c)

Integrin

Internalized integrin

Cytoskelton

Multivalent ligand substrate

Soluble multivalent ligand

Modes of cellular integrin reorganization associated with valency regulation. Integrin reorganization might occur on a relatively large scale and be

observable with fluorescence microscopy (redistribution) or on a submicroscopic scale observable using specialized techniques such as BRET or

FRET (microclustering). (a) Ligand-independent reorganization. (i) Reorganization might occur that requires intrinsic active processes such as vesicular

trafficking involved in redistribution associated with cellular polarization, as in the delivery of integrins to the leading edge of a migrating cell [51]. (ii)

Alternatively, it is hypothesized that integrins could be actively driven into microclusters either by association with lipid rafts [53��,54�] or by homotypic

oligomerization [57,58], events suggested to represent one type of priming mechanism. (Another priming mechanism is affinity regulation.) (b) Ligand-

dependent reorganization occurs primarily as a consequence of the law of mass action. (i) Gross redistribution of integrin into the zone of contact

with ligand during homotypic cell aggregation, heterotypic associations such as the immunological synapse or adhesion to other multivalent substrates

such as the extracellular matrix. (ii) Alternatively, microclustering might occur as a consequence of associations of integrins with soluble multivalent

ligands such as fibrinogen [62�]. (i) and (ii) might co-exist in adhesion to substrates. (c) Adhesion strengthening represents ligand-dependent regulatory
events that can occur by several distinct mechanisms, either separately or, more likely, in combination. (i) Evidence suggests that inside–out

signals could function to release cytoskeletal restraints and increase diffusivity [59], thereby facilitating ligand-induced redistribution of integrins to the

zone of contact with substrate, and enhanced valency of the interaction [41]. (ii) Membrane reshaping (cell spreading) to enhance the complementarity

between integrin and ligand-bearing surfaces can also serve to facilitate increased valency of adhesions [86]. Post-ligand association with the

cytoskeletal can also contribute to adhesion strengthening, most notably in the context of focal adhesions and focal contacts (not shown).
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this is diffusion-facilitated ligand-dependent integrin

redistribution, in which signals function to release cyto-

skeletal constraints and increase diffusion to enable affi-

nity for ligand and mass-action to drive accumulation of

integrins into the zone of contact (Figure 2) [42,47,

61,62�]. The importance of ligand in driving the reorga-

nization is demonstrated by the finding that PMA, cyto-

chalasin-D and latrunculin, at concentrations that activate

adhesion and diffusivity [61] do not promote biolumines-

cence resonance energy transfer (BRET)-detectable

microclustering of aIIbb3; whereas these agents enhance

microclustering in response to soluble multivalent ligands

[62�] (Figure 2). Consistently, real-time imaging using

green fluorescent protein (GFP)-tagged integrins has

shown that visible redistribution occurs long after the

initial contacts with the substrate [63,64].

Regulatory signals
Dynamic regulation of integrin-mediated adhesion

requires integration of signals initiated by a wide range

of stimuli. However, relatively few details are known

regarding the integrin-proximal events or their dynamics

during cell polarization and migration.

The cytoskeletal protein talin, known for years to associ-

ate with integrin cytoplasmic domains, has now clearly

been established as an important modulator of affinity for

b1, b2 and b3 integrins. Isolated talin-head-domain con-

structs directly associate with b1, b2 and b3 cytoplasmic

domains and, upon overexpression in cells, promote affi-

nity modulation of aIIbb3 and LFA-1 [37��,65�,66].

Structural studies of aIIb–b3 cytoplasmic domain com-

plexes [36��] and b3–talin FERM (band 4.1, ezrin,

radixin, moesin)-domain complexes [67�], together with

in vivo FRET studies involving the aL and b2 cytoplas-

mic domains in the presence of talin-head domain [37��],
provide strong support for a mechanism whereby the talin

head domain promotes an unclasping and separation of

the a and b cytoplasmic domains and thus stabilizes the

high-affinity conformation. How integrin–talin interac-

tions are regulated remains largely unknown but probably

involves unmasking of the talin FERM domain by either

calpain cleavage [68] or binding to phosphatidylinositides

[69]. Although the talin head domain clearly modulates

integrin conformation and affinity, it remains to be deter-

mined whether physiologically it functions in initiation of

inside–out priming signals, or whether other proteins,

such as integrin cytoplasmic domain-associated protein

1 (ICAP-1), function at early stages and are replaced later

by talin when focal adhesions are formed [70].

Rap1 has emerged as an important signaling effector for

chemokine, cytokine, platelet agonist, Fc, T cell and

adhesion receptors that regulate b1, b2 and b3 integrin

function [71]. Significantly, overexpression of dominant-

negative forms of Rap1 or of the Rap1 GTPase-activating

protein Spa-1 abrogates chemokine- and T–cell-receptor-

induced regulation of LFA-1 [52,53��,54�,72,73]. The

recently identified Rap1 effector, RAPL, co-localizes

and co-precipitates with aLb2 in a manner dependent

on aL cytoplasmic domain residues Lys1097 and Lys1099

[53��]. Given the proximity of this apparent binding site

to the GFFKR sequence (single letter amino acid code) in

the aL cytoplasmic domain, it is proposed that RAPL

functions analogously to talin by destabilizing the a–b
cytoplasmic interface [53��]. Consistently, many studies

with a variety of integrins have shown Rap1 and RAPL to

promote soluble ligand binding by integrins and expres-

sion of activation epitopes [52,53��,72,74–76], although a

valency-based mode of regulation has also been sug-

gested [77�].

Cell migration represents a complex process requiring

polarization of integrin distribution and function. Several

mechanisms for this have recently been identified. Dur-

ing migration of endothelial cells, the leading edge

becomes enriched specifically in high-affinity forms of

aVb3 in a Rac-dependent manner [78]. Interestingly, in

lymphocytes both talin and RAPL co-localize with LFA-1

at the leading edge and in the immunological synapse,

and Rap1/RAPL activity is absolutely required for this

polarization [51,52,53��,54�]. Conversely, localized signal-

ling through Rho and Rho-associated kinase (ROCK) is

now recognized as an important regulator of de-adhesion

in the uropod [79,80�,81,82]. In addition, it has become

clear that vesicular trafficking from the uropod to the

leading edge is required for migration [51]. Indeed,

mutations in the b2 subunit cytoplasmic domain that

block internalization cause decreased migration and exag-

gerated uropods [52].

Finally, both affinity and valency modes of regulation are

expected to be uniquely influenced by the many and

diverse lateral associations of integrins with proteins

such as IAP (integrin-associated protein; CD47), uPAR

(urokinase-type plasminogen activator receptor, CD87),

tetraspanins and Fcg receptors [83]. Interestingly, binding

of thrombospondin to CD47 modulates the affinity of b3

integrins, through a novel mode of conformational regula-

tion that was likened to modulation by activating antibo-

dies rather than traditional inside–out signaling [84�].

Conclusions
Recent advances in the integrin field have provided a

framework for understanding the structural basis of ligand

binding, the global conformational rearrangements that

constitute priming and ligand-induced activation, and the

interdomain linkages that propagate conformational sig-

nals. By the application of more quantitative and precise

methodologies, such as BRET and FRET, to the problem

of integrin distribution dynamics, it appears reasonable to

expect the development of a comparable framework for

understanding valency regulation. The challenge of this

field will be to achieve an integrated understanding of
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how all these regulating parameters are spatially and

temporally orchestrated in the context of dynamic cell

adhesion and migration.
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