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Purpose of review

Monocytes play multiple roles in immune system functions and inflammatory diseases

such as atherosclerosis. These roles are coupled to diverse trafficking and cellular

migration behaviors. Here, we review recent advances in our understanding of such

behaviors with emphasis on broad scale trafficking patterns and the cellular and

molecular mechanisms regulating diapedesis, a central aspect of trafficking.

Recent findings

Monocytes consist of ‘inflammatory’ and ‘resident’ subsets, which exhibit differential

functions and trafficking properties. Notably, the spleen has recently been identified as a

reservoir of inflammatory monocytes, which are readily recruited to injured myocardium

and possibly other tissues. Resident monocytes have been shown to undergo long-

range crawling within the lumen of the microvasculature, which facilitates immune

surveillance and rapid response to infection. Monocyte diapedesis has been

demonstrated to utilize both para and transcellular migration routes facilitated by

endothelial ‘transmigratory cups’. A significant number of new adhesion molecules and

signaling pathways have recently been uncovered as functional mediators and

modulators of these processes.

Summary

Our improving understanding of monocyte trafficking and migration mechanisms has

begun to shed light on the functions of these often enigmatic cells. Continued progress

in this area will be critical for elucidating roles of monocytes in disease and for

developing therapeutics that target monocytes.
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Introduction
Effective immune system function requires dynamic

orchestration of diverse innate and adaptive immune cell

activities. Cells of the ‘innate’ immune system include

phagocytes of the myeloid lineage (e.g. monocytes, macro-

phage, dendritic cells, neutrophils, basophils and mast

cells) and natural killer (NK) cells of the lymphoid lineage.

These are collectively able to internalize and digest bac-

teria or kill infected or abnormal host cells. Cells of the

adaptive immune system (e.g. T and B lymphocytes) are

responsible for developing immunological memory and

require innate immune cells in this process.

Monocytes, which constitute between 4 and 10% of the

circulating leukocytes, were once thought simply as macro-

phage and dendritic cell precursors [1–3]. Recently, how-

ever, these cells have been gaining widespread attention as

true multitaskers of the immune system with critical roles

in innate and adaptive immunity, immune surveillance,

scavenging, host defense and both promotion and resol-

ution of inflammation [1–3]. Monocytes are also recog-

nized as critical mediators of inflammatory diseases such as
opyright © Lippincott Williams & Wilkins. Unauth
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atherosclerosis, multiple sclerosis and rheumatoid arthritis

(RA) [1,4–7].

It is increasingly appreciated that monocytes have taken a

‘divide and conquer’ approach to fulfilling their many

duties, with distinct monocyte subsets playing distinct

functional roles [1,8,9] (Table 1 [10–15,16��,17]). In

broad terms, the ‘inflammatory monocyte’ subset are

through to play more prominent roles in promotion of

inflammation, whereas ‘resident monocytes’ are more

linked to steady-state surveillance of noninflamed tissues

and resolution of inflammation/wound healing (Table 1)

[1,8,9]. The detailed characterization of these subsets,

their functional roles and their descendants has been

extensively reviewed elsewhere [1,5–8,10,18] and will

not be discussed here in detail. Rather, here, we will focus

on the dynamic trafficking and migration behaviors of

monocytes as critical determinants of their function.
An overview of monocyte trafficking
As expected from differences between adhesion mol-

ecules and chemokine receptors, the major monocyte
orized reproduction of this article is prohibited.
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Table 1 Properties of monocyte subsets in human and mouse

Type [1,8,9] Species Antigena [1,8,9] General featuresb [1,4,8,10] Trafficking featuresc

Inflammatory Human CD14hi, CD16�, CCR2+,
CX3CR1low, CD62L+,
CD115+

Constitute 80–90% (human) or
50% (mice) blood monocytes,
produce high levels of
IL-10 (human), TNFa and
IL-1 (mouse), Contribute to
antimicrobial defense,
replenish tissue Mf and DCs,
increase number in response to
hypercholesterolemia [11]

Released from the bone marrow in
response to CCL2 [1,8,10,13,14],
return to bone marrow [15],
recruited to inflamed tissues and
lymph nodes in vivo [1,8,10,14],
pooled in the spleen [16��],
recruited to the inflamed myocardium
from spleen reservoir [16��],
accumulate in atheromata

Mouse Ly6Chi, CCR2+, CX3CR1low,
CD62L+, CD115+, F4/80+,
MHC class II�, CD11c�

Resident Human CD14+, CD16+, CCR2�,
CX3CR1hi, CD62L�,
CD115+

Constitute 10–20% (human) or
50% of (mouse) of blood
monocytes, produce TNFa at
high (human) or modest (mouse)
levels, replenish tissue Mf and
DCs, recruit other leukocytes
early in inflammation via TNFa [12],
reduce inflammation and promote
wound healing [9], involved in
angiogenesis [9]

Recruited to all noninflamed tissues
[8,10]; patrol the luminal surface
of endothelial cells in noninflamed
skin, mesentery and brain [12,17];
recruited very early into inflamed
skin, mesentery and brain [12,17];
pooled in the spleen [16��];
accumulate in atheromata

Mouse Ly6Clow, CCR2�, CX3CR1hi,
CD62L�, CD115+, F4/80+,
MHC-II

CCL, C–C-chemokine ligand; CCR, chemokine (C–C motif) receptor; CX3CR, CX3C chemokine receptor; DC, dendritic cell; IL, interleukin; Mf,
macrophage; MHC, major histocompatibility complex; TNF, tumor necrosis factor.
a In humans evidence exists for an additional CD14dim, CD16+ monocyte population that remains functionally uncharacterized [1].
b Largely derived from mouse data.
c Largely derived from mouse data.
subsets have been progressively demonstrated to exploit

distinct trafficking patterns that are coupled with their

discrete functional roles [1,8,9] (Table 1). Monocytes,

macrophages and conventional dendritic cells all derive

directly from the common macrophage dendritic cell

precursor (MDP) in the bone marrow [1,8,9]. It remains

unclear whether resident monocytes derive from the

inflammatory subset or directly from MDPs [1,8,9].

Egress of monocytes from the bone marrow requires

migration across the monolayer of endothelial cells that

line the vascular circulatory system (i.e. diapedesis) in

order to enter the circulation (i.e. intravasation). For

inflammatory monocytes, this process relies on the che-

mokine (C–C motif) receptor 2 (CCR2)-mediated signals

in response to its ligands C–C-chemokine ligand (CCL) 7

and CCL2 [1,11,13,14] (Fig. 1 a.i) [19–31]. Thus, inflam-

mation (which is associated with increased CCL2 in

circulation) strongly enhances inflammatory monocyte

emigration. Upon the resolution of inflammation, inflam-
opyright © Lippincott Williams & Wilkins. Unautho

Figure 1 (Continued )

‘patrolling’ on the luminal surface of the microvasculature. Upon recognition
population of immune cells that enter the tissue and signal recruitment of o
secretion of TNFa and IL-1b. Resolution of inflammation requires recruited mo
trafficking to draining lymphatics, it is also believed that monocytes may
vasculature [19]. (vii) Circulating inflammatory monocytes directly enter the SL
so-called ‘remote control’ mechanism [20]. Additionally, tissue monocytes
afferent lymphatics. (b and c) Transmigratory cups for para and transcellu
endothelial adherens junctions to form a paracellular gap for diapedesis. (c) M
leaving the adherens junctions intact. This process has recently been demons
leukocyte ILPs [21,22]. In both (b) and (c), ICAM-1, VCAM-1, ERM and actin-
shown ‘embracing’ the migrating monocytes. These seem to function in pr
endothelial barriers [23–31]. CCL, C–C-chemokine ligand; CCR, chemokine
cells; ERM, ezrin/radixin/moesin; ICAM, intercellular adhesion molecule; IL, in
cell precursor; MI, myocardial infarction; SLO, secondary lymphoid organ; T
matory monocytes rapidly return to the bone marrow by

migrating from the circulation into the bone marrow

parenchyma (i.e. extravasate) [15]. In the presence of a

local inflammatory stimulus, circulating inflammatory

monocytes quickly extravasate/traffic into affected non-

lymphoid tissues in a CCR2–CCL2-dependent manner,

where they differentiate into certain macrophage and

dendritic cell (i.e., inflammatory dendritic cells including

Tip dendritic cells) subsets [1,8,10] (Fig. 1 a.iv and vi).

These dendritic cells then migrate through the intersti-

tium, in a manner dependent on the integrins very late

antigen (VLA)-4 and VLA-5 [10], and enter secondary

lymphoid organs (SLOs) via the afferent lymphatics

(Fig. 1 a.vii). In response to chemokines CCL2 and

CXC chemokine ligand 9, inflammatory monocytes can

also enter inflamed SLO directly by migration across the

high endothelial venules through use of the adhesion

molecules L-selectin, CD43 and b2 integrins [8,10,20]

(Fig. 1 a.vii).
rized reproduction of this article is prohibited.

of diverse inflammatory signals, these cells serve as a ‘first responder’
ther leukocytes (e.g. neutrophils and inflammatory monocytes) through
nocytes to eventually be cleared from the peripheral tissues. In addition to
undergo ‘reverse migration’ in which they intravasate directly into the
Os in response to tissue-specific inflammatory recruitment signals via the
and their descendants enter the lymph nodes via intravasation across
lar diapedesis. (b) Monocyte is depicted in the process of disrupting
onocyte has opened a transcellular pore in an individual endothelial cell

trated to be dependent on dynamic probing and progressive extension of
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oviding adhesion scaffolds that help guide leukocyte migration across
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Figure 1 Monocyte trafficking and diapedesis

(a) Basic monocyte trafficking routes in mice. This schematic shows some key aspects of monocyte trafficking largely defined from murine systems.
Importantly, tissue and stimulus variations are not comprehensively illustrated. Trafficking events that remain unexplored or controversial are denoted by
red arrows and question marks. (i) Adult bone marrow resident and inflammatory monocytes derive from MDPs. Studies [13,15] demonstrate that
inflammatory monocytes intravasate from the bone marrow in a CCL2-dependent manner and also home back to bone marrow after removal of
inflammatory stimuli [15]. It remains unclear, precisely where resident monocytes develop (i.e. in bone marrow or circulation) and, therefore, if and how
resident monocytes intravasate from the bone marrow. (ii) A fraction of circulating resident monocytes extravasate into noninflamed peripheral tissues,
where they replenish certain subsets of macophages and DCs. This occurs in a largely CX3CL1, CCL2 and ICAM-2-dependent manner. (iii and iv) A
large fraction of total inflammatory and resident monocytes has recently been recognized to be pooled in the spleen [16��]. Although the migratory cues
driving spleen homing are not well established, they appear to be CCR2-indepenent [16��]. In response to MI splenic inflammatory monocytes are
mobilized to the circulation in an angiotensin-II-dependent manner and then subsequently recruited into damaged heart in a CCR2/CCL2-dependent
fashion [16��]. Inflammatory monocytes arrive in injured heart early (days 1–4) and are followed by arrival of resident monocytes (beginning at day�5)
in a CX3CR/CX3CL1-dependent manner [9]. Where these resident monocytes are recruited from, in particular, whether they are mobilized from the
splenic reservoir, and what the mobilization stimuli are, remain undetermined. (v and vi) In noninflamed tissues, resident monocytes undergo long-range
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On the contrary, resident monocytes constitutively

migrate into noninflamed tissues in a manner largely

dependent on the chemokines CCL3 and CX3C chemo-

kine ligand 1 (CX3CL1) and the endothelial intercellular

adhesion molecule (ICAM)-2 [8,15] (Fig. 1 a.ii). This

contributes to the homeostasis of subsets of peripheral

resident macrophages and dendritic cells. As described

below, these basic trafficking patterns have recently

undergone significant expansion.
A mobilizable splenic reservoir of monocytes
Recent studies have demonstrated in mouse that the

spleen contains an unexpectedly large fraction (i.e.

exceeding that in circulation) of the bodies of both

inflammatory and resident monocytes [16��] (Fig. 1

a.iii). Critically, these studies also show that this pool,

as is the case for bone marrow monocytes, serves as a

mobilizable reservoir [16��]. In response to heart injury by

myocardial infarction (MI), large amounts of splenic

inflammatory monocytes intravasate and subsequently

migrate into the damaged myocardium [16��] (Fig. 1

a.iii and iv). Importantly, this mobilization was indepen-

dent of CCR2 and was instead mediated by angiotensin II

(Fig. 1 a.iii). Previous work [9] by this group established

that inflammatory monocytes enter the injured heart, in a

CCR2/CCL2-depenendent manner, early (days 1–4),

where they function to phagocytize damaged cell

material (Fig. 1 a.iv). This is then followed by the

CX3CR/CX3CL1-dependent entry of resident mono-

cytes (beginning at day �5), which help to initiate tissue

repair and angiogenesis [9]. Whether these resident

monocytes are also recruited from the splenic reservoir

and what stimulates their mobilization are important

open questions. Moreover, whether the splenic reservoir

of inflammatory and resident monocytes can be mobi-

lized in other settings of tissue inflammation or damage

also awaits characterization.
Resident monocytes ‘patrol’ the intravascular
space
Newmodelsystemshave revealedthat residentmonocytes

undergo long-range lateral migration within noninflamed

peripheral microvasculature of the skin, mesentery and

central nervoussystem [12,17] (Fig. 1 a.v). Initial studies by

Auffray et al. [1,12] demonstrated that resident monocytes

continuously migrate over the luminal surface of dermal

and mesenteric microvascular endothelium, apparently

patrolling for signs of infection or tissue damage, in a

manner dependent on the integrin lymphocyte function-

associated antigen 1 (LFA-1) and CX3CR1. Wide ranging

inflammatory stimuli, including chemical irritants, aseptic

wounding and peritoneal infection with Listeria monocyto-
genes, caused rapid extravasation of patrolling monocytes,

preceding neutrophil accumulation by at least 1 h and
opyright © Lippincott Williams & Wilkins. Unautho
inflammatory monocytes by several hours (Fig. 1 a.vi).

During this early phase, the newly extravasted resident

monocytes were the main secretors of tumor necrosis factor

alpha (TNFa) and interleukin (IL)-1 and thereby servedas

sentinels initiating the inflammatory response. Similar

patrolling behavior of resident monocytes was also

observed within the microvasculature of the brain [17].

In this setting, patrolling was dependent on angiopoietin-2.

During endotoxemia, the number of patrolling monocytes

increased in an angiopoietin-2, TNFa and IL1b-mediated

fashion, and within several hours a fraction of these

migrated into the perivascular space.

The above studies are suggestive of a potentially broader

role for luminal leukocyte–endothelial patrolling during

immune surveillance [32]. Indeed, similar observations

have been made for NK T cells patrolling the liver sinu-

soidal endothelium [33,34]. Vascular endothelial cells also

express major histocompatibility complex class I and II

along with costimulatory molecules [35,36], suggesting

potential for antigen-specific stimulation of CD4+ and

CD8+ lymphocytes. It is interesting to consider whether

memory and effector lymphocytes may also exhibit lumi-

nal patrolling behaviors similar to those defined above.
Monocyte reverse migration
Several studies have begun to document the so-called

‘reverse migration’, whereby inflammatory ‘mononuclear

cells’ leave the peripheral tissues during inflammation by

reversing their migratory path and undergoing intravasa-

tion to re-enter the vascular circulation directly [19]. For

monocytes, specifically, large-scale emigration to the

draining lymphatics has been implicated as one mech-

anism for inflammation resolution [37–43]. However,

emerging evidence support a possible role for reverse

migration of monocytes from inflamed tissues [44,45�]

including atherosclerotic plaques [7]. Further elucidation

of the mechanisms of this process could be of great

translational value.
An overview of monocyte diapedesis
As suggested throughout the preceding discussion, a

central aspect of leukocyte trafficking is the continuous

transitions from the tissue into the blood circulation and

vice versa. The vascular endothelium represents the inter-

face between these two tissue compartments, serving as

both a barrier to leukocyte trafficking and a sentinel to

instruct leukocyte adhesion and transmigration. Thus,

the crossing of the endothelium (i.e. diapedesis)

represents a critical determinant of leukocyte trafficking

behaviors. Although equally important, details of the

intravasation process remain poorly studied and the vast

majority of our understanding of diapedesis, and indeed

trafficking in general, relates to extravasation.
rized reproduction of this article is prohibited.
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The ‘five-step’ cascade for extravasation
Extravasation begins with the accumulation of circulating

leukocytes on the luminal surface of the endothelium

through a classic three-step adhesion and activation cas-

cade [46–48]. First, leukocytes undergo transient rolling

interactions mediated by selectins (step 1), which facili-

tate sensing of, and responses to, chemokines presented

on the endothelial surface (step 2). This in turn triggers

high-affinity interaction of leukocyte integrin receptors

(e.g. LFA-1, Mac-1 and VLA-4) with their endothelial

ligands [e.g. ICAM-1, ICAM-2 and vascular cell adhesion

molecule 1 (VCAM-1)] resulting in firm leukocyte arrest

(step 3) [49,50]. Subsequently, leukocytes undergo actin-

dependent spreading, polarization and integrin-depen-

dent lateral migration on the luminal surface of the

endothelium (step 4). This activity seems to allow leu-

kocytes to search out sites permissive for endothelial

barrier penetration [51,52]. Finally, the leukocyte must

formally breach and transmigrate across the endothelium

(step 5), a process referred to specifically as ‘diapedesis’.

A variety of new aspects of this process for monocytes,

and leukocytes in general, have begun to emerge, as

discussed below.
Transmigratory cups
Endothelial cells contribute proactively to diapedesis, for

example, by facilitating opening of intercellular junctions

[10]. Recently, additional mechanisms have become evi-

dent. Imaging studies of monocyte adhesion to TNFa-

activated endothelial cells in vitro demonstrated the

formation of spike-shaped ‘clusters’ of E-selectin,

VCAM-1 and ICAM-1 formed around the periphery of

adherent monocytes [23]. These clusters required intact

actin and RhoA signaling and were enriched in ezrin/

radixin/moesin (ERM) proteins [23], cytoskeletal adaptor

proteins important for microvilli formation [53]. Sub-

sequent studies examining monocytes, neutrophils and

lymphocytes demonstrated that these ‘clusters’, in fact,

represented three-dimension ‘cup-like’ adhesion inter-

faces apparently assembled from extended microvilli,

each enriched in actin, ICAM-1, VCAM-1 and ERM

proteins. These surrounded and partially embraced the

adherent leukocytes in vitro [24–26] and in vivo [54–59]

(Fig. 1 b and c). These novel structures termed ‘transmi-

gratory cups’ or ‘docking structures’ seem to function

both in adhesion strengthening [23,24,27,29,30] and in

facilitating/guiding diapedesis [25,26,31] (Fig. 1 b and c).
Two routes for crossing the endothelial
barrier
Until recently, only one basic pathway for diapedesis was

widely recognized, the ‘paracellular’ route, in which

leukocytes and endothelium cooperate to locally disas-
opyright © Lippincott Williams & Wilkins. Unauth
semble the interendothelial junctions to open a paracel-

lular gap for leukocyte transmigration [60–64] (Fig. 1 b).

In fact, however, a large number of studies demonstrate

the coexistence of the paracellular route along with a

quantitatively important second pathway termed the

‘transcellular route’ both in vitro and in vivo [21,65].

For transcellular diapedesis, leukocytes pass directly

through individual endothelial cells via the formation

of a transcellular pore (Fig. 1 c). Recently dynamic

probing and progressive extension of novel, actin-, Wis-

kott–Aldrich syndrome protein- and src-dependent pro-

trusive organelles similar to podosomes and invadopodia

[66–68] (i.e. invadosome-like protrusions [21]) were

shown to be critical for transcellular pore formation by

monocytes and lymphocytes [22,69]. In-vivo settings

most relevant for monocyte utilization of each of these

migration pathways remain an important open question.
Platelet endothelial cellular adhesion
molecule-1 recycling dynamics during
monocyte diapedesis
Platelet endothelial cellular adhesion molecule-1

(PECAM-1)-mediated homophilic interaction between

leukocytes and endothelium supports efficient diaped-

esis [10,26,65,70]. This is associated with targeted recy-

cling of membrane from the ‘lateral border recycling

compartment’ to the site of diapedesis [70], a process

that seems to be a functionally important role in mono-

cyte trafficking [71�] (Table 2) [72–74,75��,76–

81,82��,83,84,85�,86,87,88�,89–93]. It was recently estab-

lished that this process is mediated by kinesin family

molecular motors and microtubule-based transport in a

manner dependent on PECAM-1 tyrosine residue Y663

[71�,94].
Negotiating the basement membrane
In addition to endothelium, leukocytes need to breach

vascular basement membrane to complete diapedesis

[64,95]. Neutrophils have been shown to preferentially

extravasate at preexisting regions of relatively low matrix

protein deposition [64,95,96]. A recent study [97] demon-

strates that monocytes and neutrophils penetrate these

low resistant areas via different modes. Whereas neutro-

phils enlarge these sites within extracellular matrix for

transmigration, monocytes drastically change their own

shape and invade the interstitium in the absence of

basement membrane remodeling. Implicit in these stu-

dies is the idea that monocytes are morphologically more

plastic than other leukocyte types and, therefore, may

have greater facility in negotiating tissue barriers in

general. Such migratory ‘freedom’ would seem an ideal

trait for a cell type charged with the responsibility of

conducting constitutive and virtually ubiquitous tissue

surveillance.
orized reproduction of this article is prohibited.
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Table 2 Molecules involved in monocyte trafficking

Classa Molecule Mono/ECb Type General function in monocyte traffickingc Reference

Adhesion ALCAM EC IgSF Diapedesis across BBB in vivo, enriched in TC [72]
CD13 Both Ectoenzyme Adhesion in vivo [73]
CD43 Mono GP Entry to lymph nodes through high endothelial venules [10]
CD44 Mono GP Rolling and transmigration in vivo [45�]
CD81 EC Tetraspanin TC formation, adhesion [30]
CD146 EC IgSF Diapedesis [74]
Del-1 EC GP Reduced adhesion [75��]
EphB4 Mono RTK Adhesion, diapedesis [76]
EphrinB2 EC EphB ligand Adhesion, diapedesis [76,77]
E-selectin EC Selectin Rolling, enriched in TC [23]
ICAM-1 EC IgSF Adhesion, diapedesis, TC formation [25,26,30]
ICAM-2 EC IgSF Adhesion, diapedesis, enriched in TC [26]
JAM-A EC IgSF Diapedesis [10]
JAM-B EC IgSF Diapedesis [10]
JAM-C EC IgSF Diapedesis [44]
JAML Mono IgSF Adhesion, diapedesis [78,79]
LFA-1 Mono Integrin Adhesion, diapedesis, patrolling microvasculature [12]
CD62L Mono Selectin Rolling [45�,80]
PECAM-1 EC/mono IgSF Diapedesis, enriched in TC [10,26]
Mac-1 Mono Integrin Adhesion, diapedesis, lateral migration [51]
PSGL-1 Mono GP Tethering and rolling [45�,80,81]
SIRPa Mono GP Reduced adhesion and diapedesis [82��]
VCAM-1 EC IgSF Adhesion, TC formation [11,23,25]
VLA4 Mono Integrin Ahesion, diapedesis, interstitial migration [10]
VLA5 Mono Integrin Interstitial migration [10]

Signaling Akt1 EC Kinase Diapedesis [83]
A20 EC Zn finger Reduced rolling and adhesion [84]
Calcium EC Ion Paracellular gap formation, TC formation [10,25,30]
CD39 Mono Apyrase Reduced adhesion to BBB in vivo [85�]
cPLA2b Mono Phospholipase Speed and directionality of chemotaxis, migration [86]
iPLA2b Mono Phospholipase Speed of chemotaxis, migration in vivo [86]
Nitric oxide Mono Nitric oxide Reduced diapedesis in vivo [87]
RhoA EC GTPase Paracellular gap formation, TC formation [10,23]
ROS EC Reactive oxy TPA-dep occludin degradation, diapedesis across BBB [88�]
STAT1 Mono TF Reduced diapedesis [89]

Chemo/cyto Ang-II Mono Hormone Resident mono patrolling of brain MV endothelial cells in vivo [17]
AngPT-II Mono GF Mobilization of splenic inflammatory monocytes [16��]
CCL2 Mono Chemokine Exit from BM, entry to inflamed tissue, cholesterol-induced

increases in no. in vivo
[11,13,14]

CCL20 Mono Chemokine Entry to inflamed skin [90]
CX3CL1 Mono Chemokine Entry to noninflamed tissue [10]
CXCL9 Mono Chemokine Entry to SLO via HEV [10]
CXCL12 Mono Chemokine Reduced adhesion, increase diapedesis [91]
IL-17 Mono Cytokine Migration [92]
Oncostatin EC Cytokine Reduced migration in vivo [93]

Cytoskelal Actin EC Microfilaments Paracellular gap opening, TC formation [23,25,26]
Tubulin EC Microtubules TC formation, LBRC regulation for diapedesis [25,26,71�]

Adaptor Ezrin EC ERM TC formation [23]
Kinesin EC Motor LBRC regulation for diapedesis [71�]
Moesin EC ERM TC formation [23]

Ang-II, angiotensin II; AngPT-II, angiopoietin II; BBB, blood–brain barrier; BM, bone marrow; CCL, C–C-chemokine ligand; Chemo/cyto, chemoat-
tractants including chemokines, cytokines, growth factors and hormones; cPLA2b, cytosolic phospholipase A2b; CX3CL, CX3C chemokine ligand;
EC, endothelial cell; FN, fibronectin; GF, growth factor; GP, glycoprotein; HEV, high endothelial venule; ICAM, intercellular adhesion molecule; IgSF,
immunoglobulin superfamily member; IL, interleukin; JAM, junctional adhesion molecule; JAML, junctional adhesion molecule like; LBRC, lateral border
recycling compartment; LFA, lymphocyte function-associated antigen; MV, microvascular; PECAM, platelet endothelial cellular adhesion molecule;
PSGL, P-selectin glycoprotein ligand; SIRP, signal regulatory protein; ROS, reactive oxygen species; RTK, tyrosine kinase; SLOs, secondary lymphoid
organs; TC, transmigratory cup; TF, transcription factor; VCAM, vascular cell adhesion molecule; VLA, very late antigen.
a Functional classification.
b Functional role on monocyte or endothelium.
c General properties/functions in monocyte migration and diapedesis.
New adhesion molecules in diapedesis

A variety of adhesion molecules have been newly shown to

function in monocyte trafficking (Table 2). The junctional

adhesion molecule (JAM)-like (JAML) protein, a JAM

family member, contributes to monocyte adhesion and

particularly transmigration in vitro [78,79]. Contrasting to
opyright © Lippincott Williams & Wilkins. Unautho
other JAMs, which are expressed on endothelial cells as

well as leukocytes, JAML is selectively expressed on

leukocytes (i.e. monocytes, neutrophils and T lympho-

cytes [78]) and is upregulated on human monocytes by

CCL2 [79]. Monocyte JAML mediates adhesion to endo-

thelial cells in a novel VLA-4-dependent manner; VLA-4

activation facilitates JAML dimerization, which in turn
rized reproduction of this article is prohibited.
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facilitates binding of JAML to the coxsackie and adeno-

virus receptor and potentially other endothelial by ligands

[78,79].

Eph receptors and ephrin ligands molecules were origin-

ally identified for their roles in neuronal pathfinding, and

later in vasculogenesis [76,77,98]. The Eph receptors are

composed of a family of receptor tyrosine kinases that bind

to transmembrane ligand ephrins and modulate cell–cell

contacts and bidirectional cell signaling. Whereas human

and murine monocytes express EphB receptors, EphB2

and EphB4, arterial and some venous endothelial cells

display luminal ephrinB2 expression, which partially

associates with PECAM-1 [98]. EphrinB2–EphB inter-

action was shown to contribute to CCL2-stimulated mono-

cyte adhesion and diapedesis across arterial endothelium

in a manner dependent on both EphB4 forward signaling

and ephrinB2 reverse signaling [76,77].

Tetraspanins are proteins that possess four membrane-

spanning segments that are largely implicated in forming/

stabilizing lateral protein–protein associations within the

plane of the plasma membrane [99]. Studies with lympho-

cytes have demonstrated the tetraspanin CD9 and CD151

facilitate formation of transmigratory cups (apparently by

promoting ICAM-1 and VCAM-1 clustering), and, in this

way, enhance lymphocyte adhesion [27,28]. Recently,

through genetic screens, the tetraspannin CD81 was

demonstrated to be significantly upregulated in endo-

thelial cells of atherosclerotic plaques in humans [30].

In-vitro studies demonstrated that CD81 overexpression

enhanced the recruitment of ICAM-1 and VCAM-1 into

transmigratory cups and facilitated adhesion of monocytes.

These studies suggest that CD81 may contribute to ath-

erosclerosis by enhancing monocyte adhesiveness in a

transmigratory cup-dependent manner [30].

P-selectin glycoprotein ligand-1 (PSGL-1, also known as

CD162) is well established to initiate tethering of leu-

kocytes on activated endothelial cells under flow [64].

The role of PSGL-1 in monocyte trafficking, however,

has been unclear. Recent studies demonstrate that

inflammatory, but not resident, monocytes express sig-

nificant amounts of PSGL-1 on their surface in humans

and mice, which promotes early steps (i.e. tethering and

rolling) in their adhesion to atherosclerotic lesions [80].

Additional studies have shown that inflammatory mono-

cytes transmigrate across infected dermal venules

in vivo, in a PSGL-1/L-selectin-dependent manner [81].

Activated leukocyte cell adhesion molecule 1 (ALCAM-

1) is an endothelially expressed immunoglobulin super-

family (IgSF) protein that binds to the costimulatory

molecule CD6 extracellularly and ERM proteins cyto-

plasmically. Transmigration of both lymphocytes and

monocytes across the blood–brain barrier (BBB) endo-
opyright © Lippincott Williams & Wilkins. Unauth
thelium in vitro and in vivo was recently shown to be

dependent on ALCAM-1, which, interestingly, was

found greatly enriched in transmigratory cups [72].

CD146 is another IgSF member that is constitutively

expressed in human endothelial cells and further upre-

gulated by TNFa. The function of CD146 in general is

poorly understood, but was also recently shown to support

monocyte adhesion and trans-endothelial migration

through an as yet unknown monocyte receptor [74].

Transmembrane ectoenzymes have been implicated in

leukocyte trafficking events, largely through proteolysis

of vasoactive peptides and chemokines. Interestingly,

CD13 (aminopeptidase N) expressed on both monocytes

and endothelium was recently shown to participate in

direct homophilic adhesion and in this way enhance

monocyte adhesion and diapedesis across endothelium

in vitro and in an in-vivo model of peritonitis [73].
New signaling molecules/pathways in
monocyte diapedesis
Many aspects of the signaling molecules/pathways

important for monocyte trafficking have been well

characterized (see reviews [10,64,100]), yet many other

are still emerging. Chemokine CCL2 is central for

recruitment of monocytes into many inflamed tissues

[100] including cholesterol-induced atherosclerotic pla-

ques [11]. Mishra et al. [86] demonstrated for the first time

that Ca2+-independent phospholipase and cytosolic phos-

pholipase differentially regulated monocyte migration

speed and directionality in response to CCL2 via differ-

ential subscellular localization patterns.

Several new chemokines/cytokines have been implicated

in monocyte trafficking. CCL20 (ligand for CCR6) pro-

motes monocyte recruitment to inflamed skin [90].

CXCL12 (SDF-1) was shown to enhance monocyte

migration and diapedesis across BBB endothelium in vitro
[91]. Interestingly, SDF-1-enhanced migration apparently

occurred through down modulation of LFA-1-mediated

adhesion in a Lyn kinase-dependent manner [91]. How-

ever, as these experiments were in the absence of physio-

logic shear flow (in which LFA-1 is critical for initial

monocyte arrest on endothelium), it remains unclear

whether SDF-1 will have a net positive or negative effect

of monocyte recruitment in vivo. Finally, IL-17 [a cytokine

produced by the recently discovered proinflammatory T

helper cell 17 (Th17) CD4+ lymphocyte subset] has been

shown to promote monocyte chemotaxis through p38

mitogen-activated protein kinases signaling, suggesting

a mechanism for recruitment of monocytes during

Th17-mediated diseases such as RA [92].

Recent studies have suggested a new signaling mechanism

for breaching the endothelial barrier. Upon interaction
orized reproduction of this article is prohibited.
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with monocytes, brain endothelial cells were shown to

release extracellular protease tissue-type plasminogen

activator (tPA). tPA, in turn, mediated breakdown of the

tight junctional protein occludin, in an extracellular signal-

related kinase 1/2-dependent manner, thereby promoting

monocyte diapedesis [88�]. Other studies have revealed for

the first time that phosphoinositide 3-kinase (PI3K)/Akt1

signaling in endothelium are key components of endo-

thelial barrier disruption associated with acute inflam-

mation and, apparently as a result, monocyte and neutro-

phil recruitment in vivo [83].
Modulatory molecules in monocyte migration
Contrasting those that promote/mediate efficient mono-

cyte diapedesis, endogenous molecules that negatively

modulate this process have remained largely unknown.

Expression of developmental endothelial locus-1 (Del-1, a

matrix protein) by endothelium has been shown to be

inversely related to monocyte and neutrophil adhesion in
vitro and in vivo [75��]. Similarly, signal regulatory protein

a (SIRPa), an IgSF member and ligand for CD47 (a

transmembrane protein expressed on endothelium), has

been reported to negatively regulate monocyte adhesion

and diapedesis [82��]. Interestingly, both Del-1 and SIRPa

act by inhibiting functions of key monocyte integrins,

LFA-1 (for Del-1) and Mac-1 (for SIRPa) [82��]. Addition-

ally, CD39 (expressed on endothelial cells and monocytes)

functions to metabolize proinflammatory purinergic ago-

nists. In this way, CD39 prevented recruitment of mono-

cytes into ischemic cerebral tissues through repression of

purinergic receptor P2X7-dependent upregulation of Mac-

1 in vitro and in vivo [84]. In addition, the interferon-g/Jak-

STAT1 [89], oncostatin M/oncostatin M receptor-b/

nuclear factor kappa B [93], CXCL12 (SDF-1a)/

CXCR4/Src kinase/Lyn (discussed above) [91], A20/IkB

[84] and thrombin/nitric oxide/protease-activated receptor

1/PLCb/PI3K [87] signaling pathways have each separ-

ately been recognized as novel suppressors for monocyte

trafficking (Table 2). Further characterization of such

antagonistic mechanisms for monocyte recruitment will

be of clear translational potential.
Conclusion
Monocytes have become increasingly recognized as mul-

tifunctional contributors to immune system function and

inflammatory disease. To accomplish their diverse roles,

monocytes exhibit particularly diverse and dynamic traf-

ficking properties. Recent advances in understanding of

monocyte subsets, functions and trafficking have signifi-

cantly expanded our understanding of these cells, but at

the same time have raised many new questions. For

example, it remains to be determined how splenic reser-

voirs of monocytes may contribute to responses in set-

tings other than heart injury and how this pool of cells
opyright © Lippincott Williams & Wilkins. Unautho
may contribute to inflammatory disease. Similar ques-

tions can be asked about the patrolling resident monocyte

population. Moreover, the basis for monocyte interstitial

migration in three-dimensional matrices remains largely

unexplored, and the process of monocyte exit from

tissues during resolution of inflammation (an area with

particular therapeutic potential) needs much further elu-

cidation. Finally, despite a growing list of molecules

implicated in monocyte trafficking, much remains to

be determined about how their functions are coordinated

and, particularly, how these become dysregulated during

development of inflammatory diseases such as athero-

sclerosis.
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